
Jarkus Analysis Toolbox
Release 0.0

Christa van IJzendoorn

Jun 17, 2021

CONTENTS

1 Contents 3
1.1 Method . 4
1.2 Getting Started . 5
1.3 Examples . 8
1.4 Characteristic parameters . 10
1.5 Functionalities . 13
1.6 Help . 27
1.7 Development . 28

Python Module Index 31

Index 33

i

ii

Jarkus Analysis Toolbox, Release 0.0

The Jarkus Analysis Toolbox (JAT) is a Python-based open-source software, that can be used to analyze the Jarkus
dataset. The Jarkus dataset is one of the most elaborate coastal datasets in the world and consists of coastal profiles
of the entire Dutch coast, spaced about 250-500 m apart, which have been measured yearly since 1965. The main
purpose of the JAT is to provide stakeholders (e.g. scientists, engineers and coastal managers) with the techniques that
are necessary to study the spatial and temporal variations in characteristic parameters like dune height, dune volume,
dune foot, beach width and closure depth. Different available definitions for extracting these characteristic parameters
were collected and implemented in the JAT.

The software that is described in this documentation can be found in this Github repository. Additionally, the extracted
parameters for the entire Jarkus dataset are made available through the 4TU repository. Please use the issues page to
raise questions and suggest improvements.

Example of characteristic parameters that can be extracted using the JAT.

CONTENTS 1

https://github.com/christavanijzendoorn/JAT
https://doi.org/10.4121/14514213
https://github.com/christavanijzendoorn/JAT/issues

Jarkus Analysis Toolbox, Release 0.0

2 CONTENTS

3

Jarkus Analysis Toolbox, Release 0.0

CHAPTER

ONE

CONTENTS

1.1 Method

4 Chapter 1. Contents

Jarkus Analysis Toolbox, Release 0.0

Flowchart of Jarkus Analysis Toolbox functionalities.

The Jarkus Analysis Toolbox helps to analyse the Jarkus dataset. This dataset is stored on an online repository and
made available by Rijkswaterstaat and Deltares.

Based on user input the necessary data is retrieved from this dataset by the JAT for certain years and locations. The
JAT contains the option to save the elevation information of the requested coastal transects and to create a quickplot
that shows all measured years per requested transect.

The core of the JAT is in the parameter extraction. This means that characteristic parameters are extracted from
the elevation profile of each requested coastal transect. User input determines which characteristic parameters are
extracted and it is expected that more extraction methods will be added to the JAT in the future. A guide on how to
add a new method is provided in the Development section.

The raw output parameters that were extracted by using the currently available methods are made avaiable through
4TU repository.

Within the examples provided along with the JAT there are examples of filtering and visualisation that can be executed
based on the raw output parameters. These examples provide suggestions which help to kick-start further analysis, but
this is where the user can apply their own methods.

1.2 Getting Started

1.2.1 Installation

Download the JAT from https://github.com/christavanijzendoorn/JAT.git and save the JAT to a convenient location on
your computer.

Or use git and navigate to a convenient location and clone the repository:

$ git clone https://github.com/christavanijzendoorn/JAT.git

Open anaconda prompt and activate the environment you created or want to use (are you not able to follow? Go to
Help). The JAT requires Python 3.7 and is not compatible with Python 3.8, so make sure to use the right version in
your environment.

Navigate to the directory where the Jarkus Ananlysis Toolbox is located and the setup.py file is present. Use the
following command to install the JAT:

$ python setup.py install

1.2.2 Using the JAT

To use the JAT you will need to create two files (the names are suggestions based on the provided Examples:

1. jarkus.yml

2. JAT_use.py

The jarkus.yml file contains all the settings that are used to analyse the jarkus data.

These settings include:

• years and transects - Fill in the requested years and transects

• inputdir - Fill in where the input data is stored

• outputdir - Fill in where you want to store the JAT output

1.2. Getting Started 5

https://doi.org/10.4121/14514213
https://github.com/christavanijzendoorn/JAT.git

Jarkus Analysis Toolbox, Release 0.0

• data locations - Specify the name of the input files or specify their online location

• save locations - Specify the names of the folders in which the JAT output is saved

• user defined - Specify the user defined values

• dimensions:

– setting - Specify the characteristic parameters that should be extracted

– variables - No action needed, this is included to create a list of the requested parameters

The functionalities that you can use in the JAT_use.py file are explained in the Functionalities section. The best way to
get an introduction into these functionalities is by using the Examples. These examples provide information on how to
prepare transects, extract dimensions from these transects and show how to filter, analyse and visualize the extracted
dimensions. Do not forget to change the directory of the jarkus.yml file in JAT_use.py.

Below you can find information that helps to understand (how to fill in) the settings in the jarkus.yml file.

1.2.3 Jarkus transect numbers

To be able to decide what transects you want to analyse with the JAT, you need to know the way in which the transects
are numbered. The convention that is used in the JAT is as follows:

Vaknummer + raainummer = VNNNNNN:

• always 6 transect (raai) related numbers

• 1 or 2 coastal section (kustvak) related numbers, 2 in case of kustvak of 10+

Example Sand Engine: Vak 9, raai 11109 = 9011109 Example Meijendel: Vak 8, raai 9325 = 8009325 Example
Westenschouwen: Vak 13, raai 1465 = 13001465

To check which transects are present in the area you want to analyse use the following sources:

• Overview of transects: https://maps.rijkswaterstaat.nl/geoweb55/index.html?viewer=Kustlijnkaart

• Overview of transects and ‘kustvakken’: https://puc.overheid.nl/rijkswaterstaat/doc/PUC_629858_31/

In the jarkus.yml file you can choose how many transects you want to analyse. First, you choose the type of analysis:

• single - analyse just one transect

• multiple - analyse a selection of tansects, these do not have to be next to each other spatially

• range - analyse transects between certain transect numbers. Especially around the boundaries of kust-
vakken, make sure to check whether the transects you want are indeed in increasing order

• all - analyse al available transect in the Jarkus dataset

In all cases, the JAT will automatically filter transect numbers that do not exist.

6 Chapter 1. Contents

https://maps.rijkswaterstaat.nl/geoweb55/index.html?viewer=Kustlijnkaart
https://puc.overheid.nl/rijkswaterstaat/doc/PUC_629858_31/

Jarkus Analysis Toolbox, Release 0.0

1.2.4 Input files

Jarkus

The Jarkus Analysis Toolbox was developed to make the analysis of the Jarkus dataset more accessible. To work with
the JAT, the Jarkus data has to be accessed through this link.

When you want to access large amounts of data (i.e. many transects and years) or want to be independent of internet
access it is advisable to download the dataset (approx. 3 GB). Make sure to include their directory in the settings file
(jarkus.yml).

Dunetoe

When you want to work with the dune toes that were extracted using the second derivative method. These can be
found here.

Nourishment

This is where the nourishment database can be found.

LocFilter

The location_filter.yml file is used to remove transects that contain, for instance, dams and dikes. It is used in Example
4 with JAT.Filtering_functions.locations_filter. This file can be rewritten and used with the JAT.
Filtering_functions.locations_filter to do other types of filtering.

Titles

This file is used to automatically create figures that show the distribution through time and space of all available
characteristic parameters, see Example 3.

1.2.5 User-defined settings

Below you can find a list of all user-defined settings that are included in the jarkus.yml file. For each setting a link to
the documentation of the corresponding function is provided which explains how the setting is used.

• filter1: JAT.Jarkus_Analysis_Toolbox.Transects.save_elevation_dataframes

• filter2: JAT.Filtering_functions.availability_locations_filter

• primary dune: JAT.Jarkus_Analysis_Toolbox.Extraction.get_primary_dune_top

• secondary dune: JAT.Jarkus_Analysis_Toolbox.Extraction.get_secondary_dune_top

• mean sea level: JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_sea_level

• mean high water: JAT.Jarkus_Analysis_Toolbox.Extraction.
get_mean_high_water_fixed

• mean low water: JAT.Jarkus_Analysis_Toolbox.Extraction.
get_mean_low_water_fixed

• landward variance threshold: JAT.Jarkus_Analysis_Toolbox.Extraction.
get_landward_point_variance

• landward derivative: JAT.Jarkus_Analysis_Toolbox.Extraction.
get_landward_point_derivative

• landward bma: JAT.Jarkus_Analysis_Toolbox.Extraction.get_landward_point_bma

• seaward foreshore: JAT.Jarkus_Analysis_Toolbox.Extraction.
get_seaward_point_foreshore

1.2. Getting Started 7

https://opendap.deltares.nl/thredds/fileServer/opendap/rijkswaterstaat/jarkus/profiles/transect.nc
https://opendap.deltares.nl/thredds/fileServer/opendap/rijkswaterstaat/DuneFoot/DF.nc
https://opendap.tudelft.nl/thredds/dodsC/data2/deltares/rijkswaterstaat/suppleties/nourishments.nc.html

Jarkus Analysis Toolbox, Release 0.0

• seaward active profile: JAT.Jarkus_Analysis_Toolbox.Extraction.
get_seaward_point_activeprofile

• seaward DoC: JAT.Jarkus_Analysis_Toolbox.Extraction.get_seaward_point_doc

• dune toe fixed: JAT.Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_fixed

• dune toe classifier: JAT.Jarkus_Analysis_Toolbox.Extraction.
get_dune_toe_derivative

• normalization: JAT.Jarkus_Analysis_Toolbox.Extraction.normalize_dimensions(

1.2.6 Dependencies

The JAT has specific dependencies that are managed through the setup.py file, the packages needed are as follows:

* numpy =1.17.2

* pandas = 0.25.1

* netCDF4

* scipy = 1.3.1

* matplotlib

* cftime = 1.0.3.4

* joblib = 0.13.2

* pybeach

1.2.7 License

The JAT is free software made available under the GPL-3.0 License. For details see the license file.

1.3 Examples

After going through the Getting Started section you can try out the Jarkus Analysis Toolbox with the following
examples.

1.3.1 1. Single transect

This example provides the code necessary to extract all characteristic parameters from one single transect. The default
settings in the jarkus_01.yml file look at the years from 1980 to 2021 and at transect location 8009325. It is adviced
to play around with these settings and extract the characteristic parameters for different periods and location. To
extract the characteristic parameters open JAT_use_single_transect.py in the Python IDE of your choice (Spyder is
recommended, see Help) and run the commands step by step. This should show you the steps necessary to extract the
characteristic parameters for one transect and gives examples how these data can be visualized. Note that the plotting
functions of pandas were used in this example, for more elaborate visualization use matplotlib.

8 Chapter 1. Contents

https://github.com/christavanijzendoorn/JAT/blob/master/LICENSE.txt

Jarkus Analysis Toolbox, Release 0.0

1.3.2 2. Regional analysis

Example 2 shows how to extract the characteristic parameters from multiple transects at once. Tow work with this
example, include the correct directories in the jarkus_02.yml file and run the code in JAT_use_region_transects.py.

1.3.3 3. Extract all

This Example shows how to extract all characteristic parameters from all transect locations. For this, include the
correct directories in the jarkus_03.yml file and run the code in JAT_use_extract_all.py. The analysis can take a long
time, around 10 hours. Thus, it is recommended to download the input files and store them locally to reduce the run
time.

The Filtering_execution.py file provides an example of how the filtering functionalities of the JAT can be used.

To create distribution plots that show the values of the characteristic parameters through time and space use Distri-
bution_plots.py. This script can only be used after the output of JAT_use_extract_all.py and Filtering_execution.py
are available. Distribution_plots.py creates the distribution plots for both the filtered and unfiltered dataframes. The
distribution plots of the unfiltered dataframes are available on the 4TU repository to show what the characteristic
parameters look like.

Creation_netcdf.py was used to produce the netcdf file that is available on the 4TU repository. The output of Cre-
ation_netcdf.py, which is extracted_parameters.nc is saved in the Input directory because it serves as the input for
Example 5.

1.3.4 4. Dune toe analysis

The Jarkus Analysis Toolbox was developed during the research that led to the publication of Van IJzendoorn et al.
(2021)1. This example shows how the toolbox was used for the dune toe analysis. To replicate the results include the
correct directories in the jarkus_04.yml file and run the code in JAT_use_dune_toe_analysis.py. Then, the following
scripts produce the figures that are included in the paper.

• dunetoe_transect_figure.py - Figure 1

• dunetoe_transect_map.py - Figure 1

• dunetoe_trend_figure.py - Figure 2 and Supl. Figure 1

• dunetoe_alongshore_figure.py - Figure 3

• sea_level_rise_figure.py - Figure 4

The mapping executed in the dunetoe_transect_map.py uses the package basemap which is dependent on a specific
version of matplotlib and is therefore not compatible with the jarkus dependencies. Thus, it is best to create a new
environment to run this script. This can be done by using the dune_transect_map.yml file which includes all the
dependencies necessary to run the mapping script. Use the anaconda prompt and go to directory where environment
file (dune_transect_map.yml) is located, use the following commands:

$ conda env create -f dune_transect_map.yml
$ conda activate map
$ python dunetoe_transect_map.py

It should be noted that for the sea level rise figure, a specific dataset is used that can be found here.

The Figures folder includes all figures for reference so you can check whether your output matches the expectations.

1 Van IJzendoorn, C.O., De Vries, S., Hallin, C. & Hesp, P.A. (2021). Sea level outpaced by coastal dune toe translation. In review

1.3. Examples 9

https://doi.org/10.4121/14514213
https://doi.org/10.4121/14514213
https://www.clo.nl/indicatoren/nl022910-zeespiegelstand-nederland-en-mondiaal

Jarkus Analysis Toolbox, Release 0.0

1.3.5 5. Use NetCDF file

The output of Example 3 was converted into a netcdf file that is publicly available. This makes sure that the character-
istic parameters can be accessed directly without having to use the Jarkus Analysis Toolbox. Thus, to work with this
example you can choose to work through example 3 or just simply download extracted_parameters.nc from the 4TU
repository.

The Load_data_from_netcdf.py script shows how to load the extracted characteristic parameters from the netcdf file
and gives a first glimpse of how to work with these data.

1.4 Characteristic parameters

1.4.1 Explanation of characteristic parameters

This table provides the user with a direct link to the explanation of the module that extracts the characteristic parameter
from the coastal profile. Thus, it provides an explanation of the precise method used to derive each characteristic
parameter.

Parameter Type Explanation
Dune top Primary JAT.Jarkus_Analysis_Toolbox.Extraction.get_primary_dune_top

Secondary JAT.Jarkus_Analysis_Toolbox.Extraction.get_secondary_dune_top
Mean Sea Level Fixed JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_sea_level

Variable JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_sea_level_variable
Mean Low Water Fixed JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_low_water_fixed

Variable JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_low_water_variable
Mean High Water Fixed JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_high_water_fixed

Variable JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_high_water_variable
Intertidal area width Fixed JAT.Jarkus_Analysis_Toolbox.Extraction.get_intertidal_width_fixed

Variable JAT.Jarkus_Analysis_Toolbox.Extraction.get_intertidal_width_variable
Landward boundary Variance JAT.Jarkus_Analysis_Toolbox.Extraction.get_landward_point_variance

Derivative JAT.Jarkus_Analysis_Toolbox.Extraction.get_landward_point_derivative
BMA JAT.Jarkus_Analysis_Toolbox.Extraction.get_landward_point_bma

Seaward boundary Foreshore JAT.Jarkus_Analysis_Toolbox.Extraction.get_seaward_point_foreshore
Active Profile JAT.Jarkus_Analysis_Toolbox.Extraction.get_seaward_point_activeprofile
Depth of Closure JAT.Jarkus_Analysis_Toolbox.Extraction.get_seaward_point_doc

Dune toe Fixed JAT.Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_fixed
Derivative JAT.Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_derivative
Pybeach JAT.Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_pybeach

Beach width Fixed JAT.Jarkus_Analysis_Toolbox.Extraction.get_beach_width_fix
Variable JAT.Jarkus_Analysis_Toolbox.Extraction.get_beach_width_var
Derivative JAT.Jarkus_Analysis_Toolbox.Extraction.get_beach_width_der
Variable Derivative JAT.Jarkus_Analysis_Toolbox.Extraction.get_beach_width_der_var

Beach gradient Fixed JAT.Jarkus_Analysis_Toolbox.Extraction.get_beach_gradient_fix
Variable JAT.Jarkus_Analysis_Toolbox.Extraction.get_beach_gradient_var
Derivative JAT.Jarkus_Analysis_Toolbox.Extraction.get_beach_gradient_der

Dune front width Primary Fixed JAT.Jarkus_Analysis_Toolbox.Extraction.get_dune_front_width_prim_fix
Primary Derivative JAT.Jarkus_Analysis_Toolbox.Extraction.get_dune_front_width_prim_der
Secondary Fixed JAT.Jarkus_Analysis_Toolbox.Extraction.get_dune_front_width_sec_fix
Secondary Derivative JAT.Jarkus_Analysis_Toolbox.Extraction.get_dune_front_width_sec_der

Dune front gradient Primary Fixed JAT.Jarkus_Analysis_Toolbox.Extraction.get_dune_front_gradient_prim_fix
Primary Derivative JAT.Jarkus_Analysis_Toolbox.Extraction.get_dune_front_gradient_prim_der

continues on next page

10 Chapter 1. Contents

https://doi.org/10.4121/14514213
https://doi.org/10.4121/14514213

Jarkus Analysis Toolbox, Release 0.0

Table 1 – continued from previous page
Secondary Fixed JAT.Jarkus_Analysis_Toolbox.Extraction.get_dune_front_gradient_sec_fix
Secondary Derivative JAT.Jarkus_Analysis_Toolbox.Extraction.get_dune_front_gradient_sec_der

Dune volume Fixed JAT.Jarkus_Analysis_Toolbox.Extraction.get_dune_volume_fix
Derivative JAT.Jarkus_Analysis_Toolbox.Extraction.get_dune_volume_der

Intertidal area gradient Fixed JAT.Jarkus_Analysis_Toolbox.Extraction.get_intertidal_gradient_fix
Intertidal area volume Fixed JAT.Jarkus_Analysis_Toolbox.Extraction.get_intertidal_volume_fix

Variable JAT.Jarkus_Analysis_Toolbox.Extraction.get_intertidal_volume_var
Foreshore gradient BMA JAT.Jarkus_Analysis_Toolbox.Extraction.get_foreshore_gradient
Foreshore volume BMA JAT.Jarkus_Analysis_Toolbox.Extraction.get_foreshore_volume
Active profile gradient BMA JAT.Jarkus_Analysis_Toolbox.Extraction.get_active_profile_gradient
Active profile volume BMA JAT.Jarkus_Analysis_Toolbox.Extraction.get_active_profile_volume

1.4.2 Variable names and dependencies of characteristic parameters

This table shows the variable name of each characteristic parameter that is used in the jarkus.yml file to indicate which
characteristic parameters should be extracted. Additionally, the corresponding variable names of the output that is
produced for each characteristic parameter is given. The last column provides on which variable the extraction of the
characteristic parameters depends. For instance, the mean sea level can only be extracted when the dune top location
had already been extracted because the cross-shore location of the primary dune top is necessary. These dependencies
are also indicated in the Functionalities with the See also sections.

Parameter Variable name (in jarkus.yml) Output variables Dependent
Dune top primary_dune_top DuneTop_prim_x

DuneTop_prim_y
secondary_dune_top DuneTop_sec_x DuneTop_prim_x

DuneTop_sec_y DuneTop_prim_y
Mean Sea Level mean_sea_level MSL_x DuneTop_prim_x

mean_sea_level_variable MSL_x_var MLW_x_var
MHW_x_var

Mean Low Water mean_low_water_fixed MLW_x_fix MSL_x
mean_low_water_variable MLW_x_var MSL_x

MHW_y_var
Mean High Water mean_high_water_fixed MHW_x_fix MSL_x

mean_high_water_variable MHW_x_var MSL_x
MHW_y_var

Intertidal area width intertidal_width_fixed Intertidal_width_fix MLW_x_var
MHW_x_var

intertidal_width_var Intertidal_width_var MLW_x_var
MHW_x_var

Landward boundary landward_point_variance Landward_x_variance DuneTop_prim_x
landward_point_derivative Landward_x_der MHW_y_var
landward_point_bma Landward_x_bma

Seaward boundary seaward_point_foreshore Seaward_x_FS
seaward_point_activeprofile Seaward_x_AP
seaward_point_doc Seaward_x_mindepth

Seaward_x_DoC
Dune toe dune_toe_fixed Dunetoe_x_fix

dune_toe_derivative Dunetoe_y_der
Dunetoe_x_der

dune_toe_pybeach Dunetoe_y_pybeach DuneTop_prim_x
continues on next page

1.4. Characteristic parameters 11

Jarkus Analysis Toolbox, Release 0.0

Table 2 – continued from previous page
Dunetoe_x_pybeach MSL_x

MHW_x_var
Landward_x_der

Beach width beach_width_fix Beach_width_fix MSL_x
Dunetoe_x_fix

beach_width_var Beach_width_var MSL_x_var
Dunetoe_x_fix

beach_width_der Beach_width_der MSL_x
Dunetoe_x_der

beach_width_der_var Beach_width_der_var MSL_x_var
Dunetoe_x_der

Beach gradient beach_gradient_fix Beach_gradient_fix MSL_x
Dunetoe_x_fix

beach_gradient_var Beach_gradient_var MSL_x_var
Dunetoe_x_fix

beach_gradient_der Beach_gradient_der MSL_x
Dunetoe_x_der

Dune front width dune_front_width_prim_fix Dune-
front_width_prim_fix

DuneTop_prim_x
Dunetoe_x_fix

dune_front_width_prim_der Dune-
front_width_prim_der

DuneTop_prim_x
Dunetoe_x_der

dune_front_width_sec_fix Dunefront_width_sec_fix DuneTop_prim_x
DuneTop_prim_y
DuneTop_sec_x
Dunetoe_x_fix

dune_front_width_sec_der Dunefront_width_sec_der DuneTop_prim_x
DuneTop_prim_y
DuneTop_sec_x
Dunetoe_x_der

Dune front gradient dune_front_gradient_prim_fix Dune-
front_gradient_prim_fix

DuneTop_prim_x
Dunetoe_x_fix

dune_front_gradient_prim_der Dune-
front_gradient_prim_der

DuneTop_prim_x
Dunetoe_x_der

dune_front_gradient_sec_fix Dune-
front_gradient_sec_fix

DuneTop_prim_x
DuneTop_prim_y
DuneTop_sec_x
Dunetoe_x_fix

dune_front_gradient_sec_der Dune-
front_gradient_sec_der

DuneTop_prim_x
DuneTop_prim_y
DuneTop_sec_x
Dunetoe_x_der

Dune volume dune_volume_fix DuneVol_fix DuneTop_prim_x
Landward_x_variance
Dunetoe_x_fix

dune_volume_der DuneVol_der DuneTop_prim_x
Landward_x_variance
Dunetoe_x_der

Intertidal area gradient intertidal_gradient Intertidal_gradient_fix MSL_x
MLW_x_fix
MHW_x_fix

Intertidal area volume intertidal_volume_fix Intertidal_volume_fix MSL_x
MLW_x_fix

continues on next page

12 Chapter 1. Contents

Jarkus Analysis Toolbox, Release 0.0

Table 2 – continued from previous page
MHW_x_fix

intertidal_volume_var Intertidal_volume_var MSL_x
MLW_x_var
MHW_x_var

Foreshore gradient foreshore_gradient Foreshore_gradient Seaward_x_FS
Landward_x_bma

Foreshore volume foreshore_volume Foreshore_volume Seaward_x_FS
Landward_x_bma

Active profile gradient active_profile_gradient Active_profile_gradient Seaward_x_AP
Landward_x_bma

Active profile volume active_profile_volume Active_profile_volume Seaward_x_AP
Landward_x_bma

1.5 Functionalities

The Jarkus Analysis Toolbox provides many functionalities. Here, all available modules are explained per category.

1.5.1 Geometric functions

Provides basic geometric functions that execute calculations based on the coastal profile.

JAT.Geometric_functions.find_intersections(elevation, crossshore, y_value)
Find cross-shore location of intersection between profile and horizontal line at a fixed elevation.

Parameters

• elevation (np.array) – np.array containing the elevation of the coastal profile in me-
ters.

• crossshore (np.array) – np.array containing the crossshore location in meters.

• y_value (float) – Elevation of the horizontal line in meters.

Returns intersection_x: Cross-shore location of the intersection between the coastal profile and
horizontal line.

Return type int

JAT.Geometric_functions.get_gradient(elevation, seaward_x, landward_x)
Find gradient of a profile between two points

The gradient of a coastal profile is determined by finding the slope of the line of best fit along the elevation
between a landward and seaward boundary.

Parameters

• elevation (np.array) – np.array containing the elevation of the coastal profile in me-
ters

• seaward_x (float or int) – Cross-shore seaward boundary

• landward_x (float or int) – Cross-shore landward boundary

Returns gradient: slope of the best fit line

Return type float

1.5. Functionalities 13

Jarkus Analysis Toolbox, Release 0.0

JAT.Geometric_functions.get_volume(elevation, seaward_x, landward_x)
Determine volume under coastal profile between two two points

The volume of the coastal profile between a landward and seaward boundary is determined by integrating over
the surface beneath the coastal profile between those two points.

Parameters

• elevation (np.array) – np.array containing the elevation of the coastal profile in me-
ters

• seaward_x (float or int) – Cross-shore seaward boundary

• landward_x (float or int) – Cross-shore landward boundary

Returns volume: surface under the graph in m^2. Can be interpreted as m^3 by assuming the profile
is 1 m wide.

Return type float

1.5.2 Jarkus Analysis Toolbox

Includes the most important functionalities of the JAT including retrieving data and extracting profile dimensions

class JAT.Jarkus_Analysis_Toolbox.Extraction(data, config)
Extracting characteristic parameters from coastal profiles.

This class provides the functionalities to extract the characteristic parameters requested by the user from tran-
sects of the jarkus dataset. Additionally, it provides functions to post-process the outcome of the extraction.

get_active_profile_gradient(trsct_idx)
Extract the gradient of the active profile (Active_profile_gradient).

The gradient of the active profile is determined by finding the slope of the line of best fit along the coastal
profile between the seaward active profile boundary and the landward boundary between the marine and
aeolian zone (BMA).

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_seaward_point_activeprofile,
JAT.Jarkus_Analysis_Toolbox.Extraction.get_landward_point_bma, JAT.
Geometric_functions.get_gradient

get_active_profile_volume(trsct_idx)
Extract the volume of the active profile (Active_profile_volume).

The volume of the active profile is determined by finding the surface under the coastal profile between the
seaward active profile boundary and the landward boundary between the marine and aeolian zone (BMA).

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_seaward_point_activeprofile,
JAT.Jarkus_Analysis_Toolbox.Extraction.get_landward_point_bma, JAT.
Geometric_functions.get_volume

14 Chapter 1. Contents

Jarkus Analysis Toolbox, Release 0.0

get_all_dimensions()
Extracts all requested characteristic parameters for all requested years and transects.

Checks whether the saving directory is in place and proceeds to go through all requested transects. Per
characteristic parameter it is checked whether it was requested, and, if so, the values for all requested
years are extracted. Ultimately, per transect a dataframe is saved that includes the values of all requested
characteristic parameters for all years at that location.

get_beach_gradient_der(trsct_idx)
Extract the gradient of the beach (Beach_gradient_der).

The gradient of the beach is determined by finding the slope of the line of best fit along the coastal profile
between the fixed mean sea level and the second derivative dune toe location.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_sea_level, JAT.
Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_derivative, JAT.
Geometric_functions.get_gradient

get_beach_gradient_fix(trsct_idx)
Extract the gradient of the beach (Beach_gradient_fix).

The gradient of the beach is determined by finding the slope of the line of best fit along the coastal profile
between the fixed mean sea level and the fixed dune toe location.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_sea_level, JAT.
Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_fixed, JAT.
Geometric_functions.get_gradient

get_beach_gradient_var(trsct_idx)
Extract the gradient of the beach (Beach_gradient_var).

The gradient of the beach is determined by finding the slope of the line of best fit along the coastal profile
between the variable mean sea level and the fixed dune toe location.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_sea_level_variable,
JAT.Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_fixed, JAT.
Geometric_functions.get_gradient

get_beach_width_der()
Extract the width of the beach (Beach_width_der).

The width of the beach is determined by calculating the cross-shore distance between the fixed mean sea
level and the dune toe location based on the second derivative method.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_sea_level, JAT.
Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_derivative

1.5. Functionalities 15

Jarkus Analysis Toolbox, Release 0.0

get_beach_width_der_var()
Extract the width of the beach (Beach_width_der_var).

The width of the beach is determined by calculating the cross-shore distance between the variable mean
sea level and the dune toe location based on the second derivative method.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_sea_level_variable,
JAT.Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_derivative

get_beach_width_fix()
Extract the width of the beach (Beach_width_fix).

The width of the beach is determined by calculating the cross-shore distance between the fixed mean sea
level and the fixed dune toe location.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_sea_level, JAT.
Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_fixed

get_beach_width_var()
Extract the width of the beach (Beach_width_var).

The width of the beach is determined by calculating the cross-shore distance between the variable mean
sea level and the fixed dune toe location.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_sea_level_variable,
JAT.Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_fixed

get_dataframe_per_dimension()
Creates and saves a dataframe per characteristic parameter from the dataframes with all requested charac-
teristic parameters per transect.

get_dune_front_gradient_prim_der(trsct_idx)
Extract the gradient of the primary dune front (Dunefront_gradient_prim_der).

The gradient of the dune front is determined by finding the slope of the line of best fit along the coastal
profile between the primary dune top and the derivative dune toe location.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_primary_dune_top, JAT.
Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_derivative, JAT.
Geometric_functions.get_gradient

get_dune_front_gradient_prim_fix(trsct_idx)
Extract the gradient of the primary dune front (Dunefront_gradient_prim_fix).

The gradient of the dune front is determined by finding the slope of the line of best fit along the coastal
profile between the primary dune top and the fixed dune toe location.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_primary_dune_top,

16 Chapter 1. Contents

Jarkus Analysis Toolbox, Release 0.0

JAT.Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_fixed, JAT.
Geometric_functions.get_gradient

get_dune_front_gradient_sec_der(trsct_idx)
Extract the gradient of the secondary dune front (Dunefront_gradient_sec_der).

The gradient of the dune front is determined by finding the slope of the line of best fit along the coastal
profile between the secondary dune top and the derivative dune toe location.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_secondary_dune_top, JAT.
Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_derivative, JAT.
Geometric_functions.get_gradient

get_dune_front_gradient_sec_fix(trsct_idx)
Extract the gradient of the secondary dune front (Dunefront_gradient_sec_fix).

The gradient of the dune front is determined by finding the slope of the line of best fit along the coastal
profile between the secondary dune top and the fixed dune toe location.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_secondary_dune_top,
JAT.Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_fixed, JAT.
Geometric_functions.get_gradient

get_dune_front_width_prim_der()
Extract the width of the primary dune front (Dunefront_width_prim_der).

The width of the primary dune front is determined by calculating the cross-shore distance between the
cross-shore location of the primary dune top and the derivative dune toe location.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_primary_dune_top, JAT.
Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_derivative

get_dune_front_width_prim_fix()
Extract the width of the primary dune front (Dunefront_width_prim_fix).

The width of the primary dune front is determined by calculating the cross-shore distance between the
cross-shore location of the primary dune top and the fixed dune toe location.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_primary_dune_top, JAT.
Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_fixed

get_dune_front_width_sec_der()
Extract the width of the secondary dune front (Dunefront_width_sec_der).

The width of the secondary dune front is determined by calculating the cross-shore distance between the
cross-shore location of the secondary dune top and the derivative dune toe location.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_secondary_dune_top, JAT.
Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_derivative

1.5. Functionalities 17

Jarkus Analysis Toolbox, Release 0.0

get_dune_front_width_sec_fix()
Extract the width of the secondary dune front (Dunefront_width_sec_fix).

The width of the secondary dune front is determined by calculating the cross-shore distance between the
cross-shore location of the secondary dune top and the fixed dune toe location.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_secondary_dune_top, JAT.
Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_fixed

get_dune_toe_derivative(trsct_idx)
Extract the elevation (Dunetoe_y_der) and cross-shore location (Dunetoe_x_der) of the dune toe based on
the second derivative method [3].

The dune toe elevation is extracted from the repository where the work of Diamantidou et al. [3] is saved.
First, the method selects part of the coastal profile. This selection is between the landward boundary
(get_landward_point_derivative) and the variable MHW. Then, the first and second derivative of this part
of the coastal profile is calculated. The most seaward location where the first derivative is lower than 0.001
and the second derivative is lower than 0.01 is selected as the dune toe [3].

Parameters trsct_idx (index of the transect necessary to extract
the elevation of the profiles.) –

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_landward_point_derivative

get_dune_toe_fixed(trsct_idx)
Extract the cross-shore location of the dune toe (Dunetoe_x_fix).

The dune toe is defined as a fixed, user-defined elevation (default = +3 m). The intersections between
this elevation and the coastal profile are determined. Then, the cross-shore location of the most seaward
intersection is selected as the dune toe.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

get_dune_toe_pybeach(trsct_idx)
Extract the elevation (Dunetoe_y_pybeach) and cross-shore location (Dunetoe_x_pybeach) of the dune toe
based on pybeach machine learning method7.

Pybeach provides three different pre-trained machine learning models (barrier-island, wave-embayed and
mixed) that can extract the dune toe location. Here, the user can define which model to use (default =
‘mixed’) These models were based on the identification of the dune toe by experts. To make the applicaiton
of the pybeach machine learning method comparable to the second derivative method a similar reduction
of the coastal profile (with a landward and seaward boundary) is executed.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_landward_point_derivative,
JAT.Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_derivative

get_dune_volume_der(trsct_idx)
Extract the dune volume (DuneVol_der).

The dune volume is determined by finding the surface under the coastal profile between the primary dune
top and the derivative dune toe location.

7 Beuzen, Tomas. “pybeach: A Python package for extracting the location of dune toes on beach profile transects.” Journal of Open Source
Software 4(44) (2019): 1890. https://doi.org/10.21105/joss.01890

18 Chapter 1. Contents

https://doi.org/10.21105/joss.01890

Jarkus Analysis Toolbox, Release 0.0

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_primary_dune_top, JAT.
Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_derivative, JAT.
Geometric_functions.get_volume

get_dune_volume_fix(trsct_idx)
Extract the dune volume (DuneVol_fix).

The dune volume is determined by finding the surface under the coastal profile between the primary dune
top and the fixed dune toe location.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_primary_dune_top,
JAT.Jarkus_Analysis_Toolbox.Extraction.get_dune_toe_fixed, JAT.
Geometric_functions.get_volume

get_foreshore_gradient(trsct_idx)
Extract the gradient of the foreshore (Foreshore_gradient).

The gradient of the foreshore is determined by finding the slope of the line of best fit along the coastal pro-
file between the seaward foreshore boundary and the landward boundary between the marine and aeolian
zone (BMA).

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_seaward_point_foreshore,
JAT.Jarkus_Analysis_Toolbox.Extraction.get_landward_point_bma, JAT.
Geometric_functions.get_gradient

get_foreshore_volume(trsct_idx)
Extract the volume of the foreshore (Foreshore_volume).

The foreshore volume is determined by finding the surface under the coastal profile between the seaward
foreshore boundary and the landward boundary between the marine and aeolian zone (BMA).

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_seaward_point_foreshore,
JAT.Jarkus_Analysis_Toolbox.Extraction.get_landward_point_bma, JAT.
Geometric_functions.get_volume

get_intertidal_gradient_fix(trsct_idx)
Extract the gradient of the intertidal area (Intertidal_gradient_fix).

The gradient of the intertidal area is determined by finding the slope of the line of best fit along the coastal
profile between the fixed mean low water and the fixed mean high water.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

1.5. Functionalities 19

Jarkus Analysis Toolbox, Release 0.0

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_low_water_fixed, JAT.
Jarkus_Analysis_Toolbox.Extraction.get_mean_high_water_fixed, JAT.
Geometric_functions.get_gradient

get_intertidal_volume_fix(trsct_idx)
Extract the volume of the intertidal area (Intertidal_volume_fix).

The intertidal area volume is determined by finding the surface under the coastal profile between the fixed
mean low water and the fixed mean high water.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_low_water_fixed, JAT.
Jarkus_Analysis_Toolbox.Extraction.get_mean_high_water_fixed, JAT.
Geometric_functions.get_volume

get_intertidal_volume_var(trsct_idx)
Extract the volume of the intertidal area (Intertidal_volume_var).

The intertidal area volume is determined by finding the surface under the coastal profile between the
variable mean low water and the variable mean high water.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_low_water_variable,
JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_high_water_variable,
JAT.Geometric_functions.get_volume

get_intertidal_width_fixed()
Extract the width of the intertidal area (Intertidal_width_fix).

The width of the intertidal area is determined by calculating the cross-shore distance between the fixed
mean low water and the fixed mean high water.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_low_water_fixed, JAT.
Jarkus_Analysis_Toolbox.Extraction.get_mean_high_water_fixed

get_intertidal_width_variable()
Extract the width of the intertidal area (Intertidal_width_var).

The width of the intertidal area is determined by calculating the cross-shore distance between the variable
mean low water and the variable mean high water.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_low_water_variable,
JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_high_water_variable

get_landward_point_bma(trsct_idx)
Extract the cross-shore location of the landward boundary based on the boundary between the marine and
aeolian zone (Landward_x_bma) [4].

20 Chapter 1. Contents

Jarkus Analysis Toolbox, Release 0.0

The landward boundary is defined as a fixed, user-defined elevation (default = +2 m). The intersections
between this elevation and the coastal profile are determined. Then, the cross-shore location of the most
seaward intersection is selected as the landward boundary.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

get_landward_point_derivative(trsct_idx)
Extract the cross-shore location of the landward boundary based on steps in the second derivative method
(Landward_x_der) [3].

The landward boundary is determined by finding the peaks with a prominence larger than a fixed threshold
(default = +2.4 m). If peaks are found and those peaks are larger than a user-defined elevation (default =
6.0), the cross-shore location of the intersection of this elevation with the coastal profile is the landward
boundary. Otherwise, the peaks above the peaks threshold (variable MHW + prominence threshold) are
selected and the most seaward selected peak is the landward boundary. If none of these selection cannot
be applied a NaN value is inserted. This function uses scipy.signal.find_peaks [1]. The prominence of a
peak measures how much a peak stands out from the surrounding baseline of the signal and is defined as
the vertical distance between the peak and its lowest contour line [2].

Parameters trsct_idx (index of the transect necessary to extract
the elevation of the profiles.) –

get_landward_point_variance(trsct_idx)
Extract the cross-shore location of the landward boundary based on variance (Landward_x_variance).

The landward boundary is determined by calculating the variance of the elevation of a transect location
throughout all available years. Stable points are located based on where the variance of the elevation
through time is below a user-defined threshold (default = 0.1). The stable points landward of the primary
dune top are filtered out and the cross-shore location and elevation of the most seaward stable point is are
selected as the landward boundary.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_primary_dune_top

get_mean_high_water_fixed(trsct_idx)
Extract the cross-shore location of mean high water (MHW_x_fix).

The mean high water is defined as a fixed, user-defined elevation (default = + 1 m). The intersections
between this elevation and the coastal profile are determined. Then, intersections that are further than 250
m landward of the location of the mean sea level (MSL_x) are excluded. This filtering is necessary to
make sure landward intersections behind the dunes are not selected as the MHW location.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_sea_level

get_mean_high_water_variable(trsct_idx)
Extract the elevation (MHW_y_var) and cross-shore location (MHW_x_var) of mean low water.

The mean high water is defined as a spatially variable elevation. This elevation is provided per transect
location in the jarkus database (determined with tidal modeling). The intersections between this elevation
and the coastal profile are determined. Then, intersections that are further than 250 m landward of the
location of the mean sea level (MSL_x) are excluded. This filtering is necessary to make sure landward
intersections behind the dunes are not selected as the MHW location. Both the cross-shore location and

1.5. Functionalities 21

Jarkus Analysis Toolbox, Release 0.0

variable elevation are saved. Note, that the spatially variable elevation is not variable in time, so each
transect has a constant MHW elevation assigned that is constant throughout the years.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_sea_level

get_mean_low_water_fixed(trsct_idx)
Extract the cross-shore location of mean low water (MLW_x_fix).

The mean low water is defined as a fixed, user-defined elevation (default = -1 m). The intersections
between this elevation and the coastal profile are determined. Then, intersections that are further than
250 m seaward of the location of the mean sea level (MSL_x) are excluded. This filtering is necessary to
make sure seaward intersections caused by for instance the presence of shoals are not selected as the MLW
location.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_sea_level

get_mean_low_water_variable(trsct_idx)
Extract the elevation (MLW_y_var) and cross-shore location (MLW_x_var) of mean low water.

The mean low water is defined as a spatially variable elevation. This elevation is provided per transect
location in the jarkus database (determined with tidal modeling). The intersections between this elevation
and the coastal profile are determined. Then, intersections that are further than 250 m seaward of the
location of the mean sea level (MSL_x) are excluded. This filtering is necessary to make sure seaward
intersections caused by for instance the presence of shoals are not selected as the MLW location. Both
the cross-shore location and variable elevation are saved. Note, that the spatially variable elevation is not
variable in time, so each transect has a constant MLW elevation assigned that is constant throughout the
years.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_sea_level

get_mean_sea_level(trsct_idx)
Extract the cross-shore location of mean sea level (MSL_x).

The mean sea level is defined as a fixed, user-defined elevation (default = 0 m). The intersections between
this elevation and the coastal profile are determined. The most seaward intersection is selected as the cross-
shore location if no primary dune top is available. Otherwise, all intersections landward of the primary
dune top are filtered out. Then, if the distance between the most seaward and landward intersection is
equal or smaller than 100 m the most seaward intersection is selected as the cross-shore MSL location.
Otherwise, if the distance is larger than 100 m, only the intersections 100 m landward of the most seaward
intersection are selected. Of this selection, the most seaward intersection is selected as the cross-shore MSL
location. This filtering is necessary to make sure landward intersections behind the dunes and seaward
intersections due to the presence of shoals are not selected as the MSL location.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

22 Chapter 1. Contents

Jarkus Analysis Toolbox, Release 0.0

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_primary_dune_top

get_mean_sea_level_variable()
Extract the cross-shore mean sea level location (MSL_x_var) based on the variable mean high and low
water.

The mean sea level location is determined by calculating the middle point between the cross-shore location
of the variable mean high water and the variable mean low water.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_low_water_variable,
JAT.Jarkus_Analysis_Toolbox.Extraction.get_mean_high_water_variable

get_primary_dune_top(trsct_idx)
Extract the primary dune top height (DuneTop_prim_y) and cross-shore location (DuneTop_prim_x).

The primary dune top is defined as the most seaward dune top that has a height that is larger than a user-
defined threshold (default = 5 m) and a prominence that is larger than a user-defined value (default = 2.0).
This function uses scipy.signal.find_peaks [1]. The prominence of a peak measures how much a peak
stands out from the surrounding baseline of the signal and is defined as the vertical distance between the
peak and its lowest contour line [2].

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

get_requested_variables()
Retrieve all variables that are related to the requested characteristic parameters

Returns variables_req: List of all variable that are related to the requested characteristic param-
eters as included in the configuration file

Return type list

get_seaward_point_activeprofile(trsct_idx)
Extract the cross-shore location of the seaward active profile boundary (Seaward_x_AP).

The seaward boundary is defined as a fixed, user-defined elevation (default = -8 m). The intersections
between this elevation and the coastal profile are determined. Then, the cross-shore location of the most
seaward intersection is selected as the seaward boundary.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

get_seaward_point_doc(trsct_idx)
Extract the cross-shore location (Seaward_x_DoC) of the depth of closure based on the method of Hinton
[5].

Approximation of the depth of closure below a user-defined minimum (default = -5.0 m) (Sea-
ward_x_mindepth) where the standard deviation of the elevation through time is below a user-defined
value (default = 0.25) for at least a user-defined length (default = 200m), based on the method by Hinton
[5].

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

get_seaward_point_foreshore(trsct_idx)
Extract the cross-shore location of the seaward foreshore boundary (Seaward_x_FS).

1.5. Functionalities 23

Jarkus Analysis Toolbox, Release 0.0

The seaward boundary is defined as a fixed, user-defined elevation (default = -4 m). The intersections
between this elevation and the coastal profile are determined. Then, the cross-shore location of the most
seaward intersection is selected as the seaward boundary.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

get_secondary_dune_top(trsct_idx)
Extract the secondary dune top height (DuneTop_sec_y) and cross-shore location (DuneTop_sec_x).

The secondary dune top is defined as the most seaward dune top that has a height that is larger than a
user-defined threshold (default = 3 m) and a prominence that is larger than a user-defined value (default =
0.5) and is located seaward of the primary dune top. This function uses scipy.signal.find_peaks [1]. The
prominence of a peak measures how much a peak stands out from the surrounding baseline of the signal
and is defined as the vertical distance between the peak and its lowest contour line [2]. The goal of this
function is to be able to identify embryo dune formation.

Parameters trsct_idx (int) – index of the transect necessary to extract the elevation of the
profiles.

See also:

JAT.Jarkus_Analysis_Toolbox.Extraction.get_primary_dune_top

normalize_dimensions()
Normalize the cross-shore location values of all requested characteristic parameters

Normalization of the cross-shore locations is done to make cross-shore values between transects compa-
rable. The normalization is executed by subtracting a normalization value from the value of each year
of a characteristic parameter. This function provides the option to apply a normalization based on the
mean of all the years available for a transect. Additionally, a normalization based on the value of a fixed
user-defined year is available. The normalized cross-shore locations are saved as a dataframe.

class JAT.Jarkus_Analysis_Toolbox.Transects(config)
Loading and plotting transects.

This class provides the functionalities to retrieve the jarkus dataset and filter out the years and locations requested
by the user. This includes determining whether the user defined request is available. Additionally, the elevation
of each requested transect can be saved and plotted to provide easy access for analysis, and the conversion of
the transect number to the alongshore kilometer is provided.

get_availability(config)
Getting available years and transects

This function executes the get_years_filtered and get_transects_filtered functions based on a configuration
file containing the requested years and transects.

Parameters config (dict) – The configuration file that contains the user-requested years and
transects

See also:

Transects.get_years_filtered, Transects.get_transects_filtered

get_conversion_dicts()
Create conversion from transect number to alongshore meter and vice versa

For each transect number in the jarkus dataset the alongshore kilometer is calculated. A dictionary is
created that relates each transect number to its alongshore kilometer. Additionally, a dictionary is created
that does the reverse.

Returns

24 Chapter 1. Contents

Jarkus Analysis Toolbox, Release 0.0

conversion_ids2alongshore: does the conversion from transect number to alongshore meter

conversion_alongshore2ids: does the conversion from alongshore meter to transect number

Return type dict

get_transect_plot(config)
Save plot with all coastal profiles for each requested transect

For each requested transect a quickplot is created and saved (as png and picle file) that shows all the
requested years. The colors in the plot go from the start year in red to the end year in blue. Currently
the axes are set automatically but this can be changed to user-defined limits in the future, which is mostly
relevant for single transect plotting.

Parameters config (dict) – The configuration file that contains the user-requested years and
transects, reference to the jarkus dataset and the save locations.

get_transects_filtered(transects)
Filtering requested transects

It is determined what type of request is made and which transects are associated with this request. Then all
transects in the jarkus dataset are extracted and compared to the user-requested years. Only the available
(requested) years and their indices are retained.

Parameters transects (dict) – Part of the configuration file that includes which type of
transects are requested (single, multiple, range or all) and (if applicable) which transects are
associated with this request.

get_years_filtered(start_yr, end_yr)
Filtering requested years

All years in the jarkus dataset are extracted and compared to the user-requested years. Only the available
(requested) years and their indices are retained.

Parameters

• start_yr (int) – Starting year of the user-requested period

• end_yr (int) – Ending year of the user-requested period

save_elevation_dataframes(config)
Save elevation of all years for each transect as a dataframe

The elevation and corresponding cross-shore location of each requested year and requested transect loca-
tion are saved as a dataframe. Note that each resulting file contains the profiles for all requested years of
one requested transect. The function provides the option to use a filter that leaves out profiles when there
is no elevation data present between a certain minimum and maximum elevation. This can, for instance,
be useful when only the foreshore is studied and all transects that do not have elevation data in this region
are redundant. The user-defined values for filter1 are included in the configuration file. Currently this filter
does not have an effect on the extraction of the characteristic parameters because these are determined
based on the elevation that is directly extracted from the jarkus dataset. Therefore, the default setting for
filter1 is that is it not applied (config[‘user defined’][‘filter1’][‘apply’]=False), but this could be changed
in the future.

Parameters config (dict) – The configuration file that contains the user-requested years and
transects, reference to the jarkus dataset, the filter1 settings and the save locations.

1.5. Functionalities 25

Jarkus Analysis Toolbox, Release 0.0

1.5.3 Filtering functions

Provides functions that allow filtering of the extracted characteristic parameters.

JAT.Filtering_functions.availability_locations_filter(config, dimension)
Filter out transects based on data availability.

Filter out transects that have a data availability that is lower than the user-defined threshold.

Parameters

• config (dict) – configuration file that includes the user defined availability threshold in
percentage (filter2, locations)

• dimension (pd.dataframe) – dataframe containing the values of a characteristic pa-
rameter through time and more multiple transect locations.

Returns dimension_filt: dataframe containing the values of a characteristic parameter where filtered
transects have been removed.

Return type pd.dataframe

JAT.Filtering_functions.availability_years_filter(config, dimension)
Filter out years based on data availability.

Filter out years that have a data availability that is lower than the user-defined threshold.

Parameters

• config (dict) – configuration file that includes the user defined availability threshold in
percentage (filter2, years)

• dimension (pd.dataframe) – dataframe containing the values of a characteristic pa-
rameter through time and for multiple transect locations.

Returns dimension_filt: dataframe containing the values of a characteristic parameter where filtered
years have been removed.

Return type pd.dataframe

JAT.Filtering_functions.locations_filter(dimension, filter_file)
Filter out user-defined transects.

Filter out locations that are specified by the user from a dataframe of a characteristic parameter. Default settings
filter out locations like the Hondsbossche Dunes and Maasvlakte, redundant transects at the outer edges of the
Wadden Islands, and dams in Zeeland.

Parameters

• dimension (pd.dataframe) – dataframe containing the values of a characteristic pa-
rameter through time and more multiple transect locations.

• filter_file (dict) – Includes a numbered list of sections that should be excluded.
The first transect number represents the start of the section, the second transect number the
end.

Returns dimension_filt: dataframe containing the values of a characteristic parameter where filtered
transects have been removed.

Return type pd.dataframe

JAT.Filtering_functions.nourishment_filter(config, dimension)
Split characteristic parameter values into nourished and not nourished transects.

Parameters

26 Chapter 1. Contents

Jarkus Analysis Toolbox, Release 0.0

• config (dict) – configuration file that includes the directory where the nourishment
database is stored.

• dimension (pd.dataframe) – dataframe containing the values of a characteristic pa-
rameter through time and more multiple transect locations.

Returns

• pd.dataframe – nourished_dataframe: dataframe containing the values of a characteristic
parameter of only transect that have been nourished.

• pd.dataframe – not_nourished_dataframe: dataframe containing the values of a characteris-
tic parameter of only transect that have not been nourished.

JAT.Filtering_functions.yrs_filter(dimension, begin_year, end_year)
Filter out user-defined years.

Filter values of a characteristic parameter that are associated with a range of years that is specified by the user.

Parameters

• dimension (pd.dataframe) – dataframe containing the values of a characteristic pa-
rameter through time and more multiple transect locations.

• begin_yr (int) – Start year of the range that should be filtered

• end_yr (int) – End year of the range that should be filtered

Returns dimension_filt: dataframe containing the values of a characteristic parameter where filtered
years have been removed.

Return type pd.dataframe

1.6 Help

1.6.1 New to Python

If you are new to Python it might be that you are not able to follow the instructions in Getting Started. Here, a
recommened set-up is presented, however, there are many different options and everyone has different needs and
preferences so this is just a suggestion.

First of all, install Anaconda! You can find an installation guide here: https://docs.anaconda.com/anaconda/install/
windows/.

As you may or may not know Python works with packages. These packages provide certain functionalities, for
instance, installing the package matplotlib provides a library of functions that help to create graphs and plots. Often
a package is dependent on other packages to be able to work. For instance, the package numpy provides scientific
computing with Python and you can imagine that you will need this package for matplotlib to function. The packages
that are needed are called the dependencies. The JAT has several specific dependencies which are listed in Getting
Started:.

It might be that the specific packages that you need for the JAT do not go together with another project that you are
working on that, for instance, works with a newer version of matplotlib. This can occur because the available packages
for python are constantly evolving. To avoid these type of incompatibilities Anaconda works with environments. In
this case, it is recommended to make a jarkus specific environment (for instance with the name jarkus). When you
have created the environment make sure that you use python 3.7 because the JAT is not compatible with version 3.8.
The best guide to follow is provided here: https://docs.anaconda.com/anaconda/navigator/getting-started/.

1.6. Help 27

https://docs.anaconda.com/anaconda/install/windows/
https://docs.anaconda.com/anaconda/install/windows/
https://docs.anaconda.com/anaconda/navigator/getting-started/

Jarkus Analysis Toolbox, Release 0.0

The explanation on this web page relates to the Anaconda Navigator which is a nice visual way of looking at the
environments. However, what you will often see is that people install packages using conda in the Anaconda prompt.
That is also what we will need to do to install the JAT as explained in Getting Started:.

You can find information on managing environments in the Anaconda prompt here: https://docs.conda.io/projects/
conda/en/latest/user-guide/tasks/manage-environments.html. But don’t get too lost in this! The only things you need
to do is open the Anaconda Prompt and type the following:

$ activate jarkus
$ cd C:/JAT/setup.py
$ python setup.py install

First, this activate the environment that you just created (in this case jarkus). Note, that the dollar sign represents
the blinking cursor in the Anaconda Prompt. Subsequently, the ‘cd’ command indicates that you want to change the
folder that is open in the Anaconda prompt. When typing the ‘cd’ command follow it with the directory (in this case
C:\JAT\setup.py) where the setup.py file is located. For the JAT this directory is dependent on where you have saved
the JAT files, but it should end in . . . \JAT\setup.py.

These commands will install the Jarkus Analysis Toolbox and all its dependencies so it works in one go.

To work with the examples, Spyder is recommended. To make sure it is installed open the Anaconda Navigator and
browse to the jarkus environment (Applications on . . .). Here, install Spyder and then launch it. In Spyder load,
from example 1, jarkus_01.yml to see what settings are used and then open JAT_use_single_transect.py to see the
steps necessary for the analysis. Spyder’s walkthrough to get a feeling for how it works is recommended: https:
//docs.spyder-ide.org/current/index.html.

Often used short-cuts and features are:

• F5 for running all the code in one script (green play button)

• crtl+Return for running current sections denoted by %## statements (green play button in yellow/white
marking)

• F9 for running one line of code or selected code

• The variable explorer

This is the point where you can start using the Getting Started and Examples sections again. If you run into other
issues, try using Google/Stack Overflow because the internet knows a lot and other people often have experienced the
same issues that you are running into.

1.6.2 Contact

If you find problems in the code of the Jarkus Analysis Toolbox please create an issue on Github. There, you can also
ask questions, indicate that you want to contribute to the code or share ideas on the improvement and application of
the JAT.

1.7 Development

1.7.1 Suggested improvements and additions

• Include Momentary Coastline Calculation and BKL

• Include Depth of Closure - both cross-shore and elevation - check with Nicha’s work

• Include 2nd derivative method python version - based on current matlab-based method

• Include example of nourishment filter use - should work with .nc file on opendap

28 Chapter 1. Contents

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://docs.spyder-ide.org/current/index.html
https://docs.spyder-ide.org/current/index.html
https://github.com/christavanijzendoorn/JAT/issues

Jarkus Analysis Toolbox, Release 0.0

• Add active profile calculation based on landward variance boundary and DoC

• Add extraction of lon and lat - currently only cross-shore values are available after extraction

• Add . . . many other extraction methods that are available

1.7.2 Adding new extraction methods

The JAT currently provides a large range of extraction methods, but many more could be introduced. Below you find
the most important steps for adding a new method to the JAT:

• Add the extraction method in the Jarkus_analysis_toolbox.py in class Extraction as def get_parameter (fill in
appropriate name for parameter). It is best to use the other available extraction methods as inspiration so the
method is comparable. For the assigment of the output into the dimensions dataframe use an appropriate variable
name.

• Add an if statement for the extraction of the parameter in get_all_dimensions of Extraction class in
Jarkus_analysis_toolbox.py

• Add the parameter name in the configuration file so the if statement (reference above) will work. This means the
parameter name should be added in both dimensions→setting→variablename with a True/False statement, and
in dimensions→variables→ variablename with the variable names as assigned in the get_parameter function,
in the jarkus.yml file.

• Add these assigned variable names to the plot_tiles.yml file, so the distribution figures can be generated auto-
matically. Note, that for cross-shore variables it is crucial to add an ‘x’ in the variable name, so it is picked up
in the automatic normalization (Extraction → normalize_dimensions). Then, add a suitable title and label name
for in the figure.

• Make sure to update the documentation!

1.7. Development 29

Jarkus Analysis Toolbox, Release 0.0

30 Chapter 1. Contents

PYTHON MODULE INDEX

j
JAT.Filtering_functions, 26
JAT.Geometric_functions, 13
JAT.Jarkus_Analysis_Toolbox, 14

31

Jarkus Analysis Toolbox, Release 0.0

32 Python Module Index

INDEX

A
availability_locations_filter() (in mod-

ule JAT.Filtering_functions), 26
availability_years_filter() (in module

JAT.Filtering_functions), 26

E
Extraction (class in JAT.Jarkus_Analysis_Toolbox),

14

F
find_intersections() (in module

JAT.Geometric_functions), 13

G
get_active_profile_gradient()

(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 14

get_active_profile_volume()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 14

get_all_dimensions()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 14

get_availability()
(JAT.Jarkus_Analysis_Toolbox.Transects
method), 24

get_beach_gradient_der()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 15

get_beach_gradient_fix()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 15

get_beach_gradient_var()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 15

get_beach_width_der()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 15

get_beach_width_der_var()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 15

get_beach_width_fix()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 16

get_beach_width_var()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 16

get_conversion_dicts()
(JAT.Jarkus_Analysis_Toolbox.Transects
method), 24

get_dataframe_per_dimension()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 16

get_dune_front_gradient_prim_der()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 16

get_dune_front_gradient_prim_fix()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 16

get_dune_front_gradient_sec_der()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 17

get_dune_front_gradient_sec_fix()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 17

get_dune_front_width_prim_der()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 17

get_dune_front_width_prim_fix()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 17

get_dune_front_width_sec_der()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 17

get_dune_front_width_sec_fix()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 17

get_dune_toe_derivative()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 18

get_dune_toe_fixed()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 18

33

Jarkus Analysis Toolbox, Release 0.0

get_dune_toe_pybeach()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 18

get_dune_volume_der()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 18

get_dune_volume_fix()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 19

get_foreshore_gradient()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 19

get_foreshore_volume()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 19

get_gradient() (in module
JAT.Geometric_functions), 13

get_intertidal_gradient_fix()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 19

get_intertidal_volume_fix()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 20

get_intertidal_volume_var()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 20

get_intertidal_width_fixed()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 20

get_intertidal_width_variable()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 20

get_landward_point_bma()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 20

get_landward_point_derivative()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 21

get_landward_point_variance()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 21

get_mean_high_water_fixed()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 21

get_mean_high_water_variable()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 21

get_mean_low_water_fixed()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 22

get_mean_low_water_variable()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 22

get_mean_sea_level()

(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 22

get_mean_sea_level_variable()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 23

get_primary_dune_top()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 23

get_requested_variables()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 23

get_seaward_point_activeprofile()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 23

get_seaward_point_doc()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 23

get_seaward_point_foreshore()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 23

get_secondary_dune_top()
(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 24

get_transect_plot()
(JAT.Jarkus_Analysis_Toolbox.Transects
method), 25

get_transects_filtered()
(JAT.Jarkus_Analysis_Toolbox.Transects
method), 25

get_volume() (in module JAT.Geometric_functions),
13

get_years_filtered()
(JAT.Jarkus_Analysis_Toolbox.Transects
method), 25

J
JAT.Filtering_functions

module, 26
JAT.Geometric_functions

module, 13
JAT.Jarkus_Analysis_Toolbox

module, 14

L
locations_filter() (in module

JAT.Filtering_functions), 26

M
module

JAT.Filtering_functions, 26
JAT.Geometric_functions, 13
JAT.Jarkus_Analysis_Toolbox, 14

34 Index

Jarkus Analysis Toolbox, Release 0.0

N
normalize_dimensions()

(JAT.Jarkus_Analysis_Toolbox.Extraction
method), 24

nourishment_filter() (in module
JAT.Filtering_functions), 26

S
save_elevation_dataframes()

(JAT.Jarkus_Analysis_Toolbox.Transects
method), 25

T
Transects (class in JAT.Jarkus_Analysis_Toolbox), 24

Y
yrs_filter() (in module JAT.Filtering_functions),

27

Index 35

	Contents
	Method
	Getting Started
	Examples
	Characteristic parameters
	Functionalities
	Help
	Development

	Python Module Index
	Index

